Merge e100fe81c3 into db998d7279
				
					
				
			This commit is contained in:
		
						commit
						5cc506a915
					
				| 
						 | 
				
			
			@ -20,7 +20,25 @@ const power = function(a, b) {
 | 
			
		|||
  return Math.pow(a, b);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/* 
 | 
			
		||||
 * If you want to write a handmade power() function by yourself,
 | 
			
		||||
 * Here's a simple example. 
 | 
			
		||||
 * Only work with integer as input. 
 | 
			
		||||
 */
 | 
			
		||||
const intPower = function(base, exponent) {
 | 
			
		||||
  if (exponent === 0) return 1;
 | 
			
		||||
  if (base === 0) return (exponent > 0)? 0 : Infinity;
 | 
			
		||||
  let result = 1;
 | 
			
		||||
  if (exponent > 0) {
 | 
			
		||||
    while (exponent-- > 0) result *= base;
 | 
			
		||||
  } else {
 | 
			
		||||
    while (exponent++ < 0) result /= base;
 | 
			
		||||
  }
 | 
			
		||||
  return result;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
const factorial = function(n) {
 | 
			
		||||
  if (n < 0) return undefined;
 | 
			
		||||
  if (n === 0) return 1;
 | 
			
		||||
  let product = 1;
 | 
			
		||||
  for (let i = n; i > 0; i--) {
 | 
			
		||||
| 
						 | 
				
			
			@ -32,6 +50,7 @@ const factorial = function(n) {
 | 
			
		|||
// This is another implementation of Factorial that uses recursion
 | 
			
		||||
// THANKS to @ThirtyThreeB!
 | 
			
		||||
const recursiveFactorial = function(n) {
 | 
			
		||||
  if (n < 0) return undefined;
 | 
			
		||||
  if (n === 0) {
 | 
			
		||||
    return 1;
 | 
			
		||||
  }
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -39,22 +39,62 @@ describe('sum', () => {
 | 
			
		|||
});
 | 
			
		||||
 | 
			
		||||
describe('multiply', () => {
 | 
			
		||||
	test.skip('computes the product of an empty array', () => {
 | 
			
		||||
		expect(calculator.multiply([])).toBe(0);
 | 
			
		||||
	});
 | 
			
		||||
	test.skip('multiplies two numbers', () => {
 | 
			
		||||
		expect(calculator.multiply([2,4])).toBe(8);
 | 
			
		||||
	});
 | 
			
		||||
 | 
			
		||||
	test.skip('multiplies several numbers', () => {
 | 
			
		||||
		expect(calculator.multiply([2,4,6,8,10,12,14])).toBe(645120);
 | 
			
		||||
	});
 | 
			
		||||
});
 | 
			
		||||
 | 
			
		||||
/* 
 | 
			
		||||
 * Base facts:
 | 
			
		||||
 * 	=> x to the power of 0 is always 1.
 | 
			
		||||
 * 	=> with base of 0, the exponent must NOT be negative, otherwise the result will be Infinity.
 | 
			
		||||
 */
 | 
			
		||||
describe('power', () => {
 | 
			
		||||
	test.skip('raises one number to the power of another number', () => {
 | 
			
		||||
		expect(calculator.power(4,3)).toBe(64); // 4 to third power is 64
 | 
			
		||||
	});
 | 
			
		||||
	test.skip('to the negative exponent', () => {
 | 
			
		||||
		expect(calculator.power(2,-2)).toBe(0.25);
 | 
			
		||||
	});
 | 
			
		||||
	test.skip('with negative base', () => {
 | 
			
		||||
		expect(calculator.power(-2,2)).toBe(4);
 | 
			
		||||
	});
 | 
			
		||||
	test.skip('with negative base', () => {
 | 
			
		||||
		expect(calculator.power(-2,3)).toBe(-8);
 | 
			
		||||
	});
 | 
			
		||||
	test.skip('negative base to the negative exponent', () => {
 | 
			
		||||
		expect(calculator.power(-2,-2)).toBe(0.25);
 | 
			
		||||
	});
 | 
			
		||||
	test.skip('negative base to the negative exponent', () => {
 | 
			
		||||
		expect(calculator.power(-2,-3)).toBe(-0.125);
 | 
			
		||||
	});
 | 
			
		||||
	test.skip('to the power of 0', () => {
 | 
			
		||||
		expect(calculator.power(2,0)).toBe(1);
 | 
			
		||||
	});
 | 
			
		||||
	test.skip('to the power of 0', () => {
 | 
			
		||||
		expect(calculator.power(-2,0)).toBe(1);
 | 
			
		||||
	});
 | 
			
		||||
	test.skip('to the power of 0', () => {
 | 
			
		||||
		expect(calculator.power(0,0)).toBe(1);
 | 
			
		||||
	});
 | 
			
		||||
	test.skip('with base of 0', () => {
 | 
			
		||||
		expect(calculator.power(0,2)).toBe(0);
 | 
			
		||||
	});
 | 
			
		||||
	test.skip('with base of 0', () => {
 | 
			
		||||
		expect(calculator.power(0,-2)).toBe(Infinity);
 | 
			
		||||
	});
 | 
			
		||||
});
 | 
			
		||||
 | 
			
		||||
describe('factorial', () => {
 | 
			
		||||
	test.skip('factorial of negative number should be undefined', () => {
 | 
			
		||||
		expect(calculator.factorial(-1)).toBeUndefined();
 | 
			
		||||
	});
 | 
			
		||||
	test.skip('computes the factorial of 0', () => {
 | 
			
		||||
		expect(calculator.factorial(0)).toBe(1); // 0! = 1
 | 
			
		||||
	});
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,6 +1,6 @@
 | 
			
		|||
const fibonacci = function(count) {
 | 
			
		||||
  if (count < 0) return "OOPS";
 | 
			
		||||
  if (count === 0) return 0;
 | 
			
		||||
  if (count == 0) return 0;
 | 
			
		||||
  let a = 0;
 | 
			
		||||
  let b = 1;
 | 
			
		||||
  for (let i = 1; i < count; i++) {
 | 
			
		||||
| 
						 | 
				
			
			@ -11,4 +11,25 @@ const fibonacci = function(count) {
 | 
			
		|||
  return b;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
module.exports = fibonacci;
 | 
			
		||||
/* naive recursive */
 | 
			
		||||
const fibonacciRecursive = function(count) {
 | 
			
		||||
  if (count < 0) return 'OOPS';
 | 
			
		||||
  if (count == 0) return 0;
 | 
			
		||||
  if (count == 1) return 1;
 | 
			
		||||
  return fibonacciRecursive(count - 1) + fibonacciRecursive(count - 2);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Dynamic Programming (DP) recursive */
 | 
			
		||||
const fibonacciDp= function(count) {
 | 
			
		||||
  return fibonacciDpHelper(count, {'0': 0, '1': 1});
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
const fibonacciDpHelper = function(count, memo) {
 | 
			
		||||
  if (count < 0) return 'OOPS';
 | 
			
		||||
  if (memo.hasOwnProperty(`${count}`)) return memo[`${count}`];
 | 
			
		||||
  const result = fibonacciDpHelper(count - 1, memo) + fibonacciDpHelper(count - 2, memo);
 | 
			
		||||
  memo[`${count}`] = result;
 | 
			
		||||
  return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
module.exports = fibonacci;
 | 
			
		||||
		Loading…
	
		Reference in New Issue