'use strict'; Object.defineProperty(exports, '__esModule', { value: true }); exports.default = void 0; function crypto() { const data = _interopRequireWildcard(require('crypto')); crypto = function () { return data; }; return data; } function path() { const data = _interopRequireWildcard(require('path')); path = function () { return data; }; return data; } function fs() { const data = _interopRequireWildcard(require('graceful-fs')); fs = function () { return data; }; return data; } function _slash() { const data = _interopRequireDefault(require('slash')); _slash = function () { return data; }; return data; } function _jestHasteMap() { const data = _interopRequireDefault(require('jest-haste-map')); _jestHasteMap = function () { return data; }; return data; } function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : {default: obj}; } function _getRequireWildcardCache(nodeInterop) { if (typeof WeakMap !== 'function') return null; var cacheBabelInterop = new WeakMap(); var cacheNodeInterop = new WeakMap(); return (_getRequireWildcardCache = function (nodeInterop) { return nodeInterop ? cacheNodeInterop : cacheBabelInterop; })(nodeInterop); } function _interopRequireWildcard(obj, nodeInterop) { if (!nodeInterop && obj && obj.__esModule) { return obj; } if (obj === null || (typeof obj !== 'object' && typeof obj !== 'function')) { return {default: obj}; } var cache = _getRequireWildcardCache(nodeInterop); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (key !== 'default' && Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } newObj.default = obj; if (cache) { cache.set(obj, newObj); } return newObj; } /** * Copyright (c) Meta Platforms, Inc. and affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ const FAIL = 0; const SUCCESS = 1; /** * The TestSequencer will ultimately decide which tests should run first. * It is responsible for storing and reading from a local cache * map that stores context information for a given test, such as how long it * took to run during the last run and if it has failed or not. * Such information is used on: * TestSequencer.sort(tests: Array) * to sort the order of the provided tests. * * After the results are collected, * TestSequencer.cacheResults(tests: Array, results: AggregatedResult) * is called to store/update this information on the cache map. */ class TestSequencer { _cache = new Map(); _getCachePath(testContext) { const {config} = testContext; const HasteMapClass = _jestHasteMap().default.getStatic(config); return HasteMapClass.getCacheFilePath( config.cacheDirectory, `perf-cache-${config.id}` ); } _getCache(test) { const {context} = test; if (!this._cache.has(context) && context.config.cache) { const cachePath = this._getCachePath(context); if (fs().existsSync(cachePath)) { try { this._cache.set( context, JSON.parse(fs().readFileSync(cachePath, 'utf8')) ); } catch {} } } let cache = this._cache.get(context); if (!cache) { cache = {}; this._cache.set(context, cache); } return cache; } _shardPosition(options) { const shardRest = options.suiteLength % options.shardCount; const ratio = options.suiteLength / options.shardCount; return new Array(options.shardIndex) .fill(true) .reduce((acc, _, shardIndex) => { const dangles = shardIndex < shardRest; const shardSize = dangles ? Math.ceil(ratio) : Math.floor(ratio); return acc + shardSize; }, 0); } /** * Select tests for shard requested via --shard=shardIndex/shardCount * Sharding is applied before sorting * * @param tests All tests * @param options shardIndex and shardIndex to select * * @example * ```typescript * class CustomSequencer extends Sequencer { * shard(tests, { shardIndex, shardCount }) { * const shardSize = Math.ceil(tests.length / options.shardCount); * const shardStart = shardSize * (options.shardIndex - 1); * const shardEnd = shardSize * options.shardIndex; * return [...tests] * .sort((a, b) => (a.path > b.path ? 1 : -1)) * .slice(shardStart, shardEnd); * } * } * ``` */ shard(tests, options) { const shardStart = this._shardPosition({ shardCount: options.shardCount, shardIndex: options.shardIndex - 1, suiteLength: tests.length }); const shardEnd = this._shardPosition({ shardCount: options.shardCount, shardIndex: options.shardIndex, suiteLength: tests.length }); return tests .map(test => { const relativeTestPath = path().posix.relative( (0, _slash().default)(test.context.config.rootDir), (0, _slash().default)(test.path) ); return { hash: crypto() .createHash('sha1') .update(relativeTestPath) .digest('hex'), test }; }) .sort((a, b) => (a.hash < b.hash ? -1 : a.hash > b.hash ? 1 : 0)) .slice(shardStart, shardEnd) .map(result => result.test); } /** * Sort test to determine order of execution * Sorting is applied after sharding * @param tests * * ```typescript * class CustomSequencer extends Sequencer { * sort(tests) { * const copyTests = Array.from(tests); * return [...tests].sort((a, b) => (a.path > b.path ? 1 : -1)); * } * } * ``` */ sort(tests) { /** * Sorting tests is very important because it has a great impact on the * user-perceived responsiveness and speed of the test run. * * If such information is on cache, tests are sorted based on: * -> Has it failed during the last run ? * Since it's important to provide the most expected feedback as quickly * as possible. * -> How long it took to run ? * Because running long tests first is an effort to minimize worker idle * time at the end of a long test run. * And if that information is not available they are sorted based on file size * since big test files usually take longer to complete. * * Note that a possible improvement would be to analyse other information * from the file other than its size. * */ const stats = {}; const fileSize = ({path, context: {hasteFS}}) => stats[path] || (stats[path] = hasteFS.getSize(path) ?? 0); tests.forEach(test => { test.duration = this.time(test); }); return tests.sort((testA, testB) => { const failedA = this.hasFailed(testA); const failedB = this.hasFailed(testB); const hasTimeA = testA.duration != null; if (failedA !== failedB) { return failedA === true ? -1 : 1; } else if (hasTimeA != (testB.duration != null)) { // If only one of two tests has timing information, run it last return hasTimeA ? 1 : -1; } else if (testA.duration != null && testB.duration != null) { return testA.duration < testB.duration ? 1 : -1; } else { return fileSize(testA) < fileSize(testB) ? 1 : -1; } }); } allFailedTests(tests) { const hasFailed = (cache, test) => cache[test.path]?.[0] === FAIL; return this.sort( tests.filter(test => hasFailed(this._getCache(test), test)) ); } cacheResults(tests, results) { const map = Object.create(null); tests.forEach(test => (map[test.path] = test)); results.testResults.forEach(testResult => { const test = map[testResult.testFilePath]; if (test != null && !testResult.skipped) { const cache = this._getCache(test); const perf = testResult.perfStats; cache[testResult.testFilePath] = [ testResult.numFailingTests ? FAIL : SUCCESS, perf.runtime || 0 ]; } }); this._cache.forEach((cache, context) => fs().writeFileSync(this._getCachePath(context), JSON.stringify(cache)) ); } hasFailed(test) { const cache = this._getCache(test); return cache[test.path]?.[0] === FAIL; } time(test) { const cache = this._getCache(test); return cache[test.path]?.[1]; } } exports.default = TestSequencer;